Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Funct Plant Biol ; 50(12): 1117-1129, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37899005

RESUMO

In this study, agronomic and functional characteristics of potato (Solanum tuberosum ) plants constitutively overexpressing the protein phosphatase 2A (PP2A) catalytic subunit StPP2Ac2b (StPP2Ac2b-OE) were evaluated. StPP2Ac2b-OE plants display reduced vegetative growth, tuber yield and tuber weight under well-watered and drought conditions. Leaves of StPP2Ac2b-OE plants show an increased rate of water loss, associated with an impaired ability to close stomata in response to abscisic acid. StPP2Ac2b-OE lines exhibit larger stomatal size and reduced stomatal density. These altered stomatal characteristics might be responsible for the impaired stomatal closure and the elevated transpiration rates, ultimately leading to increased sensitivity to water-deficit stress and greater yield loss under drought conditions. Overexpression of StPP2Ac2b accelerates senescence in response to water-deficit stress, which could also contribute to the increased sensitivity to drought. Actively photosynthesising leaves of StPP2Ac2b-OE plants exhibit elevated levels of carbohydrates and a down-regulation of the sucrose transporter StSWEET11 , suggesting a reduced sucrose export from leaves to developing tubers. This effect, combined with the hindered vegetative development, may contribute to the reduced tuber weight and yield in StPP2Ac2b-OE plants. These findings offer novel insights into the physiological functions of PP2A in potato plants and provide valuable information for enhancing potato productivity by modulating the expression of StPP2Ac2b .


Assuntos
Solanum tuberosum , Solanum tuberosum/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteína Fosfatase 2/genética , Proteína Fosfatase 2/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Água/metabolismo , Sacarose/metabolismo
2.
Front Plant Sci ; 13: 869423, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36072313

RESUMO

Polyploidy, defined as the coexistence of three or more complete sets of chromosomes in an organism's cells, is considered as a pivotal moving force in the evolutionary history of vascular plants and has played a major role in the domestication of several crops. In the last decades, improved cultivars of economically important species have been developed artificially by inducing autopolyploidy with chemical agents. Studies on diverse species have shown that the anatomical and physiological changes generated by either natural or artificial polyploidization can increase tolerance to abiotic and biotic stresses as well as disease resistance, which may positively impact on plant growth and net production. The aim of this work is to review the current literature regarding the link between plant ploidy level and tolerance to abiotic and biotic stressors, with an emphasis on the physiological and molecular mechanisms responsible for these effects, as well as their impact on the growth and development of both natural and artificially generated polyploids, during exposure to adverse environmental conditions. We focused on the analysis of those types of stressors in which more progress has been made in the knowledge of the putative morpho-physiological and/or molecular mechanisms involved, revealing both the factors in common, as well as those that need to be addressed in future research.

3.
Plant Cell Environ ; 44(5): 1399-1416, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33554358

RESUMO

Compatible plant viral infections are a common cause of agricultural losses worldwide. Characterization of the physiological responses controlling plant water management under combined stresses is of great interest in the current climate change scenario. We studied the outcome of TuMV infection on stomatal closure and water balance, hormonal balance and drought tolerance in Arabidopsis. TuMV infection reduced stomatal aperture concomitantly with diminished gas exchange rate, daily water consumption and rosette initial dehydration rate. Infected plants overaccumulated salicylic acid and abscisic acid and showed altered expression levels of key ABA homeostasis genes including biosynthesis and catabolism. Also the expression of ABA signalling gene ABI2 was induced and ABCG40 (which imports ABA into guard cells) was highly induced upon infection. Hypermorfic abi2-1 mutant plants, but no other ABA or SA biosynthetic, signalling or degradation mutants tested abolished both stomatal closure and low stomatal conductance phenotypes caused by TuMV. Notwithstanding lower relative water loss during infection, plants simultaneously subjected to drought and viral stresses showed higher mortality rates than mock-inoculated drought stressed controls, alongside downregulation of drought-responsive gene RD29A. Our findings indicate that despite stomatal closure triggered by TuMV, additional phenomena diminish drought tolerance upon infection.


Assuntos
Arabidopsis/fisiologia , Secas , Estômatos de Plantas/fisiologia , Estômatos de Plantas/virologia , Potyvirus/fisiologia , Estresse Fisiológico , Ácido Abscísico/metabolismo , Arabidopsis/virologia , Mutação/genética , Doenças das Plantas/virologia , Ácido Salicílico/metabolismo , Transdução de Sinais , Água/metabolismo
4.
J Exp Bot ; 72(7): 2525-2543, 2021 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-33367755

RESUMO

Sucrose metabolism is important for most plants, both as the main source of carbon and via signaling mechanisms that have been proposed for this molecule. A cleaving enzyme, invertase (INV) channels sucrose into sink metabolism. Although acid soluble and insoluble invertases have been largely investigated, studies on the role of neutral invertases (A/N-INV) have lagged behind. Here, we identified a tomato A/N-INV encoding gene (NI6) co-localizing with a previously reported quantitative trait locus (QTL) largely affecting primary carbon metabolism in tomato. Of the eight A/N-INV genes identified in the tomato genome, NI6 mRNA is present in all organs, but its expression was higher in sink tissues (mainly roots and fruits). A NI6-GFP fusion protein localized to the cytosol of mesophyll cells. Tomato NI6-silenced plants showed impaired growth phenotype, delayed flowering and a dramatic reduction in fruit set. Global gene expression and metabolite profile analyses of these plants revealed that NI6 is not only essential for sugar metabolism, but also plays a signaling role in stress adaptation. We also identified major hubs, whose expression patterns were greatly affected by NI6 silencing; these hubs were within the signaling cascade that coordinates carbohydrate metabolism with growth and development in tomato.


Assuntos
Frutas/fisiologia , Solanum lycopersicum , beta-Frutofuranosidase , Citosol , Solanum lycopersicum/enzimologia , Solanum lycopersicum/genética , Sacarose , beta-Frutofuranosidase/genética
5.
Sci Rep ; 10(1): 18221, 2020 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-33106567

RESUMO

Eucalyptus grandis is a globally important tree crop. Greenhouse-grown tree seedlings often face water deficit after outplanting to the field, which can affect their survival and establishment severely. This can be alleviated by the application of superabsorbent hydrophilic polymers (SAPs). Growth promoting bacteria can also improve crop abiotic stress tolerance; however, their use in trees is limited, partly due to difficulties in the application and viability loss. In this work, we evaluated the improvement of drought tolerance of E. grandis seedlings by inoculating with two Pseudomonas strains (named M25 and N33), carried by an acrylic-hydrocellulosic SAP. We observed significant bacterial survival in the seedling rhizosphere 50 days after inoculation. Under gradual water deficit conditions, we observed a considerable increase in the water content and wall elasticity of M25-inoculated plants and a trend towards growth promotion with both bacteria. Under rapid water deficit conditions, which caused partial defoliation, both strains significantly enhanced the formation of new leaves, while inoculation with M25 reduced the transpiration rate. Co-inoculation with M25 and N33 substantially increased growth and photosynthetic capacity. We conclude that the selected bacteria can benefit E. grandis early growth and can be easily inoculated at transplant by using an acrylic-hydrocellulosic SAP.


Assuntos
Bactérias/isolamento & purificação , Secas , Eucalyptus/crescimento & desenvolvimento , Raízes de Plantas/crescimento & desenvolvimento , Polímeros/química , Plântula/crescimento & desenvolvimento , Bactérias/crescimento & desenvolvimento , Eucalyptus/microbiologia , Raízes de Plantas/microbiologia , Rizosfera , Plântula/microbiologia , Água
6.
J Biotechnol ; 220: 66-77, 2016 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-26784988

RESUMO

Senescence can be delayed in transgenic plants overexpressing the enzyme isopentenyltransferase (IPT) due to stress-induced increased levels of endogenous cytokinins. This trait leads to sustained photosynthetic activity and improved tolerance to abiotic stress. The aim of this study was to generate and characterize transgenic plants of maize (Zea mays L.) transformed with the IPT gene sequence under the regulation of SARK promoter (protein kinase receptor-associated senescence). Three independent transgenic events and their segregating null controls were evaluated in two watering regimes (WW: well watered; WD: water deficit) imposed for two weeks around anthesis. Our results show that the WD treatment induced IPT expression with the concomitant increase in cytokinin levels, which prolonged the persistence of total green leaf area, and maintained normal photosynthetic rate and stomatal conductance. These trends were accompanied by a minor decrease in number of grains per plant, individual grain weight and plant grain yield as compared to WW plants. Plants expressing the IPT gene under WD had PGR, anthesis and silking dates and biomass levels similar to WW plants. Our results demonstrate that expression of the IPT gene under the regulation of the SARK promoter helps improve productivity under WD conditions in C4 plants like maize.


Assuntos
Alquil e Aril Transferases/genética , Desidratação/metabolismo , Zea mays/enzimologia , Zea mays/genética , Ácido Abscísico/metabolismo , Alquil e Aril Transferases/metabolismo , Biomassa , Southern Blotting/métodos , Clorofila/metabolismo , Ciclopentanos/metabolismo , Citocininas/metabolismo , Desidratação/genética , Grão Comestível/crescimento & desenvolvimento , Oxilipinas/metabolismo , Fotossíntese , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estômatos de Plantas , Plantas Geneticamente Modificadas , Reação em Cadeia da Polimerase/métodos , Regiões Promotoras Genéticas , Solo/química , Estresse Fisiológico , Água/metabolismo , Zea mays/crescimento & desenvolvimento
7.
Eukaryot Cell ; 8(11): 1648-57, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19717743

RESUMO

Tocopherols (vitamin E) comprise a class of lipid-soluble antioxidants synthesized only in plants, algae, and some cyanobacteria. The majority of tocopherols in photosynthetic cells is in the alpha form, which has the highest vitamin E activity in humans, whereas the beta, gamma, and delta forms normally account for a small percentage of total tocopherols. The antioxidant activities of these forms of tocopherol differ depending on the experimental system, and their relative activities in vivo are unclear. In a screen for suppressors of the xanthophyll-deficient npq1 lor1 double mutant of Chlamydomonas reinhardtii, we isolated a vte3 mutant lacking alpha-tocopherol but instead accumulating beta-tocopherol. The vte3 mutant contains a mutation in the homolog of a 2-methyl-6-phytyl-1,4-benzoquinone methyltransferase gene found in plants. The vte3 npq1 lor1 triple mutant with beta-tocopherol survived better under photooxidative stress than did the npq1 lor1 mutant, but the vte3 mutant on its own did not have an obvious phenotype. Following transfer from low light to high light, the triple mutant showed a higher efficiency of photosystem II, a higher level of cell viability, and a lower level of lipid peroxide, a marker for oxidative stress, than did the npq1 lor1 mutant. After high-light transfer, the level of the photosystem II reaction center protein, D1, was also higher in the vte3 npq1 lor1 mutant, but the rate of D1 photodamage was not significantly different from that of the npq1 lor1 mutant. Taken together, these results suggest that the replacement of alpha-tocopherol by beta-tocopherol in a xanthophyll-deficient strain of Chlamydomonas reinhardtii contributes to better survival under conditions of photooxidative stress.


Assuntos
Chlamydomonas reinhardtii/metabolismo , Chlamydomonas reinhardtii/efeitos da radiação , Estresse Oxidativo/efeitos da radiação , Xantofilas/deficiência , alfa-Tocoferol/metabolismo , beta-Tocoferol/metabolismo , Proteínas de Algas/química , Proteínas de Algas/genética , Proteínas de Algas/metabolismo , Sequência de Aminoácidos , Sobrevivência Celular/efeitos da radiação , Chlamydomonas reinhardtii/química , Chlamydomonas reinhardtii/genética , Luz , Dados de Sequência Molecular , Complexo de Proteína do Fotossistema II/genética , Complexo de Proteína do Fotossistema II/metabolismo , Alinhamento de Sequência
8.
Plant Physiol ; 146(2): 737-47, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18065555

RESUMO

To determine the contribution of photosynthesis on stomatal conductance, we contrasted the stomatal red light response of wild-type tobacco (Nicotiana tabacum 'W38') with that of plants impaired in photosynthesis by antisense reductions in the content of either cytochrome b(6)f complex (anti-b/f plants) or Rubisco (anti-SSU plants). Both transgenic genotypes showed a lowered content of the antisense target proteins in guard cells as well as in the mesophyll. In the anti-b/f plants, CO(2) assimilation rates were proportional to leaf cytochrome b(6)f content, but there was little effect on stomatal conductance and the rate of stomatal opening. To compare the relationship between photosynthesis and stomatal conductance, wild-type plants and anti-SSU plants were grown at 30 and 300 micromol photon m(-2) s(-1) irradiance (low light and medium light [ML], respectively). Growth in ML increased CO(2) assimilation rates and stomatal conductance in both genotypes. Despite the significantly lower CO(2) assimilation rate in the anti-SSU plants, the differences in stomatal conductance between the genotypes were nonsignificant at either growth irradiance. Irrespective of plant genotype, stomatal density in the two leaf surfaces was 2-fold higher in ML-grown plants than in low-light-grown plants and conductance normalized to stomatal density was unaffected by growth irradiance. We conclude that the red light response of stomatal conductance is independent of the concurrent photosynthetic rate of the guard cells or of that of the underlying mesophyll. Furthermore, we suggest that the correlation of photosynthetic capacity and stomatal conductance observed under different light environments is caused by signals largely independent of photosynthesis.


Assuntos
Nicotiana/fisiologia , Fotossíntese/fisiologia , Estômatos de Plantas/fisiologia , Elementos Antissenso (Genética) , Dióxido de Carbono/metabolismo , Citocromos f/metabolismo , Condutividade Elétrica , Luz , Fotossíntese/genética , Epiderme Vegetal/fisiologia , Transpiração Vegetal , Plantas Geneticamente Modificadas , Ribulose-Bifosfato Carboxilase/metabolismo , Nicotiana/genética
9.
Plant Physiol ; 145(3): 1006-17, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17827274

RESUMO

Phosphoenolpyruvate carboxylase (PEPC; EC 4.1.1.31) plays a key role during C(4) photosynthesis and is involved in anaplerotic metabolism, pH regulation, and stomatal opening. Heterozygous (Pp) and homozygous (pp) forms of a PEPC-deficient mutant of the C(4) dicot Amaranthus edulis were used to study the effect of reduced PEPC activity on CO(2) assimilation rates, stomatal conductance, and (13)CO(2) (Delta(13)C) and C(18)OO (Delta(18)O) isotope discrimination during leaf gas exchange. PEPC activity was reduced to 42% and 3% and the rates of CO(2) assimilation in air dropped to 78% and 10% of the wild-type values in the Pp and pp mutants, respectively. Stomatal conductance in air (531 mubar CO(2)) was similar in the wild-type and Pp mutant but the pp mutant had only 41% of the wild-type steady-state conductance under white light and the stomata opened more slowly in response to increased light or reduced CO(2) partial pressure, suggesting that the C(4) PEPC isoform plays an essential role in stomatal opening. There was little difference in Delta(13)C between the Pp mutant (3.0 per thousand +/- 0.4 per thousand) and wild type (3.3 per thousand +/- 0.4 per thousand), indicating that leakiness (), the ratio of CO(2) leak rate out of the bundle sheath to the rate of CO(2) supply by the C(4) cycle, a measure of the coordination of C(4) photosynthesis, was not affected by a 60% reduction in PEPC activity. In the pp mutant Delta(13)C was 16 per thousand +/- 3.2 per thousand, indicative of direct CO(2) fixation by Rubisco in the bundle sheath at ambient CO(2) partial pressure. Delta(18)O measurements indicated that the extent of isotopic equilibrium between leaf water and the CO(2) at the site of oxygen exchange () was low (0.6) in the wild-type and Pp mutant but increased to 0.9 in the pp mutant. We conclude that in vitro carbonic anhydrase activity overestimated as compared to values determined from Delta(18)O in wild-type plants.


Assuntos
Amaranthus/enzimologia , Carbono/metabolismo , Fosfoenolpiruvato Carboxilase/metabolismo , Fotossíntese , Estômatos de Plantas/metabolismo , Amaranthus/citologia , Amaranthus/genética , Isótopos de Carbono , Regulação da Expressão Gênica de Plantas , Heterozigoto , Homozigoto , Fosfoenolpiruvato Carboxilase/genética , Estômatos de Plantas/enzimologia , Transpiração Vegetal
10.
J Biol Chem ; 279(8): 6337-44, 2004 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-14665619

RESUMO

When there is an imbalance between the light energy absorbed by a photosynthetic organism and that which can be utilized in photosynthesis, photo-oxidative stress can damage pigments, proteins, lipids, and nucleic acids. In this work we compared the wild type and a xanthophyll-deficient mutant of Chlamydomonas reinhardtii in their response to high amounts of light. Wild-type Chlamydomonas cells were able to acclimate to high amounts of light following transfer from low light conditions. In contrast, the npq1 lor1 double mutant, which lacks protective xanthophylls (zeaxanthin and lutein) in the chloroplast, progressively lost viability and photosynthetic capacity along with destruction of thylakoid membrane protein-pigment complexes and accumulation of reactive oxygen species and membrane lipid peroxides. Loss of viability was partially rescued by lowered oxygen tension, suggesting that the high sensitivity of the mutant to light stress is caused by the production of reactive oxygen species in the chloroplast. Cell death was not prevented by the addition of an organic carbon source to the growth medium, demonstrating that the photo-oxidative damage can target other essential chloroplast processes besides photosynthesis. From the differential sensitivity of the mutant to exogenously added pro-oxidants, we infer that the reactive oxygen species produced during light stress in npq1 lor1 may be singlet oxygen and/or superoxide but not hydrogen peroxide. The bleaching phenotype of npq1 lor1 was not due to enhanced photodamage to photosystem II but rather to a less localized phenomenon of accumulation of photo-oxidation products in chloroplast membranes.


Assuntos
Chlamydomonas reinhardtii/genética , Luz , Mutação , Estresse Oxidativo , Xantofilas/genética , Animais , Carbono , Morte Celular , Cloroplastos/metabolismo , Peroxidação de Lipídeos , Oxidantes/química , Oxigênio/metabolismo , Fenótipo , Espécies Reativas de Oxigênio , Fatores de Tempo
11.
Plant Cell ; 15(4): 992-1008, 2003 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-12671093

RESUMO

Xanthophylls participate in light harvesting and are essential in protecting the chloroplast from photooxidative damage. To investigate the roles of xanthophylls in photoprotection, we isolated and characterized extragenic suppressors of the npq1 lor1 double mutant of Chlamydomonas reinhardtii, which lacks zeaxanthin and lutein and undergoes irreversible photooxidative bleaching and cell death at moderate to high light intensities. Here, we describe three suppressor strains that carry point mutations in the coding sequence of the zeaxanthin epoxidase gene, resulting in the constitutive accumulation of zeaxanthin in a range of concentrations. The presence of zeaxanthin in these strains was sufficient to prevent photooxidative damage in the npq1 lor1 background. The size of the light-harvesting antenna in the suppressors decreased in high light in a manner that was proportional to the relative content of zeaxanthin, with the strain having the most zeaxanthin showing a severe reduction in levels of the major light-harvesting complex II proteins in high light. We show that the effect of constitutive zeaxanthin on light harvesting is not the main cause of increased photoprotection, because in the absence of zeaxanthin, a strain with a smaller light-harvesting antenna showed only minor protection against photobleaching in high light. Furthermore, the zeaxanthin-accumulating suppressors were able to tolerate higher levels of exogenous reactive oxygen than their parental strain under conditions that did not affect light harvesting. Our results are consistent with an antioxidant role of zeaxanthin in the quenching of singlet oxygen and/or free radicals in the thylakoid membrane in vivo.


Assuntos
Chlamydomonas reinhardtii/metabolismo , Oxirredutases/genética , Oxigênio/metabolismo , Xantofilas/metabolismo , beta Caroteno/análogos & derivados , beta Caroteno/metabolismo , Sequência de Aminoácidos , Animais , Chlamydomonas reinhardtii/genética , Chlamydomonas reinhardtii/efeitos da radiação , Luz , Peroxidação de Lipídeos , Dados de Sequência Molecular , Mutação , Estresse Oxidativo/fisiologia , Oxirredutases/metabolismo , Fotossíntese/genética , Fotossíntese/fisiologia , Fotossíntese/efeitos da radiação , Pigmentos Biológicos/metabolismo , Homologia de Sequência de Aminoácidos , Zeaxantinas
12.
Planta ; 198(4): 640-646, 1996 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28321675

RESUMO

The light-dependent rate of photosystem-II (PSII) damage and repair was measured in photoautotrophic cultures of Dunaliella salina Teod. grown at different irradiances in the range 50-3000 µmol photons · m-2· s-1. Rates of cell growth increased in the range of 50-800 µmol photons·m-2·s-1, remained constant at a maximum in the range of 800-1,500 µmol photons·m-2 ·s-1, and declined due to photoinhibition in the range of 1500-3000 µmol photons·m-2·s-1. Western blot analyses, upon addition of lincomycin to the cultures, revealed first-order kinetics for the loss of the PSII reaction-center protein (D1) from the 32-kDa position, occurring as a result of photodamage. The rate constant of this 32-kDa protein loss was a linear function of cell growth irradiance. In the presence of lincomycin, loss of the other PSII reaction-center protein (D2) from the 34-kDa position was also observed, occurring with kinetics similar to those of the 32-kDa form of D1. Increasing rates of photodamage as a function of irradiance were accompanied by an increase in the steady-state level of a higher-molecular-weight protein complex (≈ 160-kDa) that cross-reacted with D1 antibodies. The steady-state level of the 160-kDa complex in thylakoids was also a linear function of cell growth irradiance. These observations suggest that photodamage to D1 converts stoichiometric amounts of D1 and D2 (i.e., the D1/D2 heterodimer) into a ≈160-kDa complex. This complex may help to stabilize the reaction-center proteins until degradation and replacement of D1 can occur. The results indicated an intrinsic half-time of about 60 min for the repair of individual PSII units, supporting the idea that degradation of D1 after photodamage is the rate-limiting step in the PSII repair process.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...